

Artificial Floating Island System as a Sustainable Solution for Addressing Nutrient Pollution in Ohio: A Pilot Study

Ozeas Costa & Zhaozhe Chen School of Earth Sciences Ohio State Mansfield

Introduction

What is Artificial floating island and why is it important?

What is Artificial Floating Island (AFI)?

- Phytoremediation strategy
- Tackle water pollution by removing nutrients and other contaminants

How does AFI work?

How are AFIs constructed?

Bamboo

How are AFIs constructed?

Are they efficient?

- Efficiency of AFI systems:
 - Above 90% removal of N and P (Kong et al., 2019; Keizer-Vlek et al., 2014)
 - Up to 85% reduction of TOC (Shahid et al., 2019)
 - Up to 81% removal of Pb and Fe (Kiiskila et al., 2019)
 - Up to 94% removal of caffeine and 89% of ibuprofen (de Oliveira et al., 2019)
 - Up to 93% removal of textile dyes (Chandanshive et al., 2020)
 - Up to 87% reduction of COD; Up to 84% reduction of BOD (Shahid et al., 2019)

What else can they do?

• Aesthetic function

What else can they do?

Improve biodiversity

Methods and Materials

A combination of field experiments and mesocosm experiments

AFI construction

Top view with plants

Side view with plants

Top view

Bottom view

Study area description

The Milliron Research Wetland in OSU Mansfield campus

Experimental design – Field experiments

Experimental design – Mesocosm experiments

Experimental design – Nursery

Sampling procedures

- Physico-chemical parameters
 - Biweekly in the field setting (wetland) and weekly in the mesocosm setting (tanks)
 - Measured variables *in situ*:
 - water temperature (°C)
 - pH
 - oxidation-reduction potential ORP (mV)
 - conductivity (µS)
 - total dissolved solids TDS (ppm)
 - dissolved oxygen DO (mg and %)

Oakton® PC 450 portable multiparameter kit

YSI[®] ODO/BDO meter kit

Sampling procedures

- Physico-chemical parameters
- Water sample collection
 - Biweekly in the field setting (wetland) and weekly in the mesocosm setting (tanks)
 - Measured variables:
 - PO_4 , NO_2 + NO_3 , NH_4 , and SiO_2 concentrations Skalar SAN++ FIA analyzer

Sampling procedures

- Physico-chemical parameters
- Water sample collection
- Plant tissues
 - Measured variables:
 - Wet biomass (g)
 - Dry biomass (g) 80°C for 48 hours
 - Shoot length (cm)
 - Root length (cm)
 - Calculated variables:
 - Water content (%)
 - Root elongation rate

Results and discussions

Key findings from the experiments

Effect of AFIs on physico-chemistry

- The wetland has a more reducing environment compared to the tanks (p<0.05)
- AFIs increase ORP in the wetland but decrease ORP in the tanks (p<0.05)

Effect of AFIs on physico-chemistry

- The wetland has higher DO than the tanks (p<0.05)
- AFIs decrease DO (p<0.05)

Water

Effect of AFIs on physico-chemistry

• AFIs decrease pH (p<0.05)

22

Historical nutrient data in 2009

- No significant difference observed among treatments for PO_4 and NO_3 + NO_2 in both settings

- Higher NH_4 in AFIs without plant (p<0.05)
- But AFIs with plants did not present higher NH₄

AFI_{C.comosa} AFI_{E.palustris} AFI_{no-plant} Water AFI_{C.comosa} AFI_{E.palustris} AFI_{no-plant} Water

Biomass accumulation – Nursery

- *C. comosa* continuously increased biomass
- *E. palustris* barely increased biomass
- Both species started to lose water from Sep
- Root elongation rate dropped after a few weeks
- Wet biomass –dry biomass Water content = $\times 100\%$ Wet hiomass *Root length*_{(*i*+1)*th sample*}-*Root length*_{*ith sample*} *Root elongation rate =* Root length_{ith sample} C. comosa Shoot C. comosa Root Water Root elongation rate: --- C. comosa --- E.palustris content E. palustris Root E.palustris Shoot 95 200 2.0 14 12 - 90 150 1.5 10 Water Content (%) Dry Biomass (g) 8 Length(cm) 50 0.5 -80 Jul Aua Sep Sen 27 E.palustris Shoot Drv biomass: C. comosa Root C. comosa Shoot E. palustris Root

Biomass accumulation – Field experiments

- *C. comosa* dry biomass accumulation
 - Shoot: 33.2 ± 18.8 g/plant (56.8%)
 - Root: 25.3 ± 11.9 g/plant (43.2%)
- *E. palustris* dry biomass accumulation
 - Shoot: 2.0 ± 1.8 g/plant (32.8%)
 - Root: 4.1 ± 2.6 g/plant (67.2%)

E. palustris and C. comosa on AFIs in the wetland on Oct 6.

Biomass accumulation – Field experiments

Linear relationship exists between nutrient uptake and dry biomass accumulation

(Chen et al., 2019)

(Zhu et al., 2011)

Biomass accumulation – Field experiments

- Major pathways of AFIs removing nutrients:
 - Plant direct uptake
 - Sedimentation and entrapment by root systems
 - Microbial assimilation or conversion by biofilms attaching to the roots
- Ratio of root dry biomass to root length:
 - *C. comosa*: 0.36 g/cm
 - *E. palustris*: 0.09 g/cm

Biomass accumulation – Seasonal variations

• Biomass accumulation for *C. comosa* slowed down in late summer

Plant elongation – Seasonal variations

• Root elongation for *C. comosa* slowed down in late summer

Conclusions

- More field-scale studies of AFIs are required to understand the complexity of the natural environment
- More long-term studies of AFIs are required to investigate seasonality effect
- AFIs decrease the DO and pH
- AFIs with no plant increase NH₄

- *C. comosa* has better ability in plant direct uptake of nutrients
- AFIs containing *C. comosa* outperformed AFIs containing *E. palustris* in the overall nutrient removal
- Both species were largely affected by seasonal dynamics that their biomass accumulation and elongation rate decreased significantly from mid-summer

Thank you!

Questions?

Acknowledgements

- Financial support:
 - Friends of Orton Hall
 - The Ohio State University Sustainability Institute
- Advises, knowledge sharing, and personal support:
 - Dr. Ozeas S. Costa Jr.
 - Dr. Jiyoung Lee, Dr. Audrey Sawyer, and Dr. James Bauer
- Logistic support:
 - OSU Mansfield campus: Dr. Norman Jones
 - OSU Columbus campus: Dr. Steven Lower, Angeletha Rogers, Theresa Mooney

Outline

- Introduction
- Bibliometric analysis
- Methods and materials
- Results and discussions
- Conclusions

Why is AFI important?

- No land requirement
- Adjust to water level fluctuation

